
Lecture Notes in Computer Science      1

Outlines of Artificial Life:
A Brief History of

Evolutionary Individual Based Models 

Stefan Bornhofen, Claude Lattaud

Laboratoire d'Intelligence Artificielle de Paris V
LIAP5 – CRIP5, Université de Paris V

45, rue des Saints Pères
75006 Paris, France

{stefan.bornhofen, claude.lattaud}@math-info.univ-paris5.fr

Abstract.  In the research field of  Artificial Life, the concepts of  emergence
and adaptation form the basis of a class of models which describes reproducing
individuals whose characteristics evolve over time. These models allow to in-
vestigate the laws of evolution, to observe emergent phenomena at individual
and population level,  and additionally yield new design techniques for com-
puter  animation  and  robotics  industries.  This  paper  presents  an  introductory
non-exhaustive survey of the constitutive work of the last twenty years. When
examining the history of development of these models, different periods can be
distinguished. Each one incorporated new modeling concepts, however to this
day all the models have failed to exhibit long-lasting, let alone open-ended evo-
lution. A particular look at the richness of dynamics of the modeled environ-
ments  reveals that only little attention  has  been paid  to  their  design,  which
could account for the experienced evolutionary barrier.

1   Introduction

Artificial Life, or ALife, is the research field that tries to describe and study natural
life by creating artificial systems that possess some of the properties of life. Its final
aspiration is “understanding life by attempting to abstract the fundamental dynamical
principles underlying biological phenomena, and recreating these dynamics in other
physical media, such as computers, making them accessible to new kinds of experi-
mental manipulation and testing.” [1].  Besides the ambition of  enriching the knowl-
edge about Nature, Alife helps to find new design techniques. As computer simula-
tions become more and more accurate, game, entertainment and robotics industries are
constantly researching for new ideas to animate artificial characters.

The seminal novelty of ALife lies in its synthetic approach. Whereas traditional re-
search is essentially analytic, breaking down complex systems into basic components,
ALife attempts to construct complex systems from elemental units. The synthetic ap-
proach is based on two concepts, emergence and adaptation. A class of models which
particularly applies these concepts describes reproducing individuals whose character-
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istics evolve over time. This paper refers to these models as “Evolutionary Individual
Based Models” (EIBMs).

Considering the history of EIBMs in chronological order, four periods can be dis-
tinguished. They are thought of as overlapping stages of development in the art of in-
dividual based modeling by progressively incorporating new concepts. The beginnings
of the first period reach back to the sixties. It comprises the discovery of new model-
ing techniques and the implementation of the first individual based models, but at that
time extensive computer simulations were not yet feasible. At the end of the eighties,
the progressing research culminated in the appearance of ALife as a distinct disci-
pline. With the advent of computational power in the early nineties, allowing comput-
ers to run elaborate ALife systems at a tolerable speed, the second period incorporated
evolution into individual based models, trying to capture population level phenomena
by simple agents without particular morphologies in one ore two dimensional environ-
ments. The third  period was marked by the adoption of environments with physical
dynamics and directed the attention towards more elaborate phenotypic morphologies.
Evolution  was  achieved  by  modifications  of  grammar-based  genetic  encoding
schemes.  The current  fourth  period of  artificial  embryology, since  the end of  the
nineties, applies the discoveries of  evolutionary developmental biology and models
virtual creatures based on the concept of cell division by genetic regulatory networks.
To this day, a great variety of extending or complementary research has been done
with respect to each approach, but interestingly no further groundbreaking advances
have been reported. It seems as if every model hits on limits of evolutionary complexi-
ty which prohibits the kickoff for long-lasting creative evolution in artificial worlds.

This paper serves a double purpose: to structure the history of EIBMs by classify-
ing samples of the most influential works into periods, and to take advantage of this
short survey to particularly review the dynamics, i.e. the rules and forces that produce
motion or affect change within the environments. It will be suggested that the design
of this component lags behind the advances in modeling the evolving individuals.

Section two presents the two important concepts of emergence and adaptation, both
of which are present throughout the paper. Section three describes early EIBMs fea-
turing  simple evolving agents. Section four inspects models with physical dynamics
and grammar-based genetic encoding. Embryological models are described in section
five. Section six concludes with the synthesis of all the presented works.

2   ALife concepts in modeling

ALife researchers have been inspired by the creation as observed in Nature and de-
veloped the concepts of emergence and adaptation which are opposed to conventional
human design techniques. This section describes the two concepts and their implemen-
tation in modeling.

2.1  Emergence

Models of complex systems, i. e. systems composed of a large number of interact-
ing elements, are traditionally described by mathematical  formulas like differential
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equations to manipulate some aggregate state variables of the system as a whole. This
method allows a general and compendious way to analyze the behavior of a system.
However, as aggregate variables always oblige to deal with mean values, they have
difficulties with heterogeneity in the system, and their  high abstraction level  often
does not grasp the underlying reasons for the dynamics.

The Alife approach of modeling is “bottom-up engineering”, thinking of complex
systems as collections of distinct objects or individuals rather than continuous values.
Individual based models can include refined representations of the individuals and
their behavior.  Emergence describes the phenomenon that simple local interactions
between the entities of the system lead to a complex high level organization.

One of the earliest  examples of  emergence is  Craig Reynolds'  individual  based
model of boids [2]. Boids are autonomous agents simulating the flocking behavior of
birds. Flocking arises as global behavior from the interaction of very few simple local
rules. Placed into a virtual environment, the boids are programmed to follow three di-
rectives of “steering behavior” (figure 1):

• Separation:  to  maintain minimum distance  from other
boids in the environment

• Alignment:  to  match velocities  with other  boids  in the
neighborhood.

• Cohesion: to move toward the perceived center of mass
of boids in the neighborhood.

These rules are entirely local, referring only to informa-
tion accessible within a boid's own vicinity. Hence, the flock
that forms is an emergent phenomenon.

Based on this algorithm, the boids  can be enriched by
more  elaborate  behaviors  like  obstacle  avoidance  or  goal
seeking. Obstacle avoidance allows the boids to fly through
simulated environments while dodging static objects.  Goal
seeking behavior causes the flock to follow a scripted path.
The boids render such an impressing realism at simulating
flocking  as  well  as  other  coordinated  motion  like  fish
schools or human crowds that they have been used in many
cinematic animations such as the bat swarms of the motion
picture “Batman Returns” [3].

    Separation

    Alignment

    Cohesion

Fig.1. Steering behavior

Within Nature, interaction of simple agents can be observed in insect communities
like ants, bees or termites, and their cooperation strategies have inspired researchers to
devise new optimization algorithms based on the concept of emergence [4].

2.2  Adaptation

The second principle of ALife modeling is adaptation, the capability of developing
advantageous traits in response to a changing environment. Adaptation divides into
lifetime learning and evolution which operate on different time scales.
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Lifetime learning represents an individual's ability to interact and learn from its en-
vironment. In contrast, evolution is not defined for individuals, but in the context of
entire  populations.  Evolution  works  with  genetic  information,  called  genotypes.
Through a process of development, the “mapping function” translates genotypes into
phenotypes which represent the individuals' manifestation within a simulated virtual
environment. Subsequently, the phenotype is evaluated by a fitness function which de-
termines if the corresponding genotype is selected for further reproduction (figure 2). 

Lifetime learning and evolution are profoundly interwoven. Their interplay leads to
new and insufficiently understood phenomena like the “Baldwin effect” [5] which de-
notes that over time learnable traits of the phenotype are potentially assimilated into
the genotype. Hinton and Nowlan clearly demonstrated this effect by a simple evolu-
tionary simulation [6].

One of the most fundamental EIBMs are Richard Dawkins' biomorphs [7]. His pur-
pose was to demonstrate an evolutionary model on the basis of selection and mutation
as proclaimed by Darwin [8], and to point out the feasibility of discovering a desired
genotype inside  a  huge genetic  space.  Biomorphs  are  two dimensional  branching
structures used as a graphic representation of a number of simple binary genes, con-
troling features like depth of recursion, angles of branching and length of lines and al-
lowing about 500 billion possible combinations. To produce offsprings, biomorphs
use asexual reproduction by copying the parental genes with some probability of ran-
dom mutation. 

To evolve a biomorph, the user starts with a display of an initially given parent in-
dividual in the center of the screen and twelve children surrounding it. The user sim-
ply clicks on one of the children or the original parent to select it for survival and re-
production. Subsequently, the selected biomorph's genes are used to create a new gen-
eration, and the biomorph as well as its children are again displayed. These steps are
repeated, and with every generation the biomorphs “adapt” to the given fitness func-
tion, that is to say, to the taste of the user. In spite of the simplicity of their genetic en-
coding,  the  resulting  morphologies  of  biomorphs  are  surprisingly manifold.  Some
biomorphs may look like insects, microorganisms, trees or other familiar objects (fig-
ure 3).

The general concept of biomorphs has been extended into models which simulate
the process of evolution not only based on user selection, but also on agent interac-
tions within a more complex environment [9].

             Fig.2. The evolutionary  cycle              Fig.3. Evolved Biomorphs
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3   Simple agent approach

Early  implementations of EIBMs  tried to  capture the processes of evolution by
modeling simple reproducing individuals acting on a small set of behavioral routines.
Their level of detail was reduced to a one or two dimensional environmental frame-
work and individuals which lacked almost any morphology, but this is sufficient to ob-
serve ecological interactions between the organisms and the emergence of population
level phenomena: the limitation of resources introduces a competition between the re-
producers, and they become engaged in a  struggle for existence.  According to the
principle of the “survival of the fittest”, the organisms either develop successful strate-
gies or die. 

3.1  Tierra

In 1992, Tom Ray modeled  evolution by the propagation of self-replicating pro-
grams  running  on  a  virtual  machine,  called  Tierra  [10].  These  programs  can  be
thought of as digital organisms whose genotype matches the phenotype, and whose
physical environment consists of energy, i.e. CPU time, and limited space in memory.

An evolutionary run is started by introducing a hand-written ancestor program into
the empty memory. To reproduce, the organism's code is executed. It writes a copy of
itself into newly allocated memory space. Mutations introduce differences in the off-
springs, and competition for memory causes an evolutionary process to begin.

During a run, organisms shrink by decreasing the length of their genotype, as short-
er genes mean less genetic material to be copied more rapidly. Parasites occur, i.e. or-
ganisms that execute instructions of other programs, and even hyper-parasites develop
which utilize instructions from parasites. At the same time, hosts evolve immunity to
parasitism, forcing their parasites to evolve methods to get around the new defenses.
These observations illustrate the “Red Queen principle” [11] which states that coe-
volving populations are due to continuing development in order to maintain their fit-
ness relative to one another. 

Tierra has been used to experimentally examine ecological and evolutionary pro-
cesses such as host-parasite density dependent population regulation. Even if Tierra is
modeled in an abstract virtual fashion, it finds many analogies to the real world and its
diverse ecological communities. 

3.2  Echo

John Holland's Echo system [12] is a simulator of virtual ecologies which is geared
to more lifelike notions of space and time. It investigates mechanisms which regulate
diversity and information-processing in systems comprised of many interacting adap-
tive agents, or “complex adaptive systems”.

 The surrounding environment is made up of a square toroidal lattice of sites which
produces different types of regenerating resources, encoded by a letter. Agents are lo-
cated at a site and possess a small set of simple interactions with their environment.
They can relocate to another site, eat the resources and store them. At the same time,
the environment charges a maintenance fee which can be considered as metabolic
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cost. An agent also features a small range of predefined inter-agent behaviors which
are fighting, trading and mating. Fighting and trading allow for resource exchange. If
an agent has collected sufficient resources to rewrite its genetic code, it reproduces
asexually or, via mating, sexually.

This system exhibits emergent phenomena like the formation of agent communities
and trading networks. Echo was used by environmental researchers to show that ex-
plicitly deriving differential equations was not necessarily the most accurate method
for modeling food web complexity [13]. However, due to the high abstraction level of
the Echo model, the degree of fidelity to real systems is uncertain.

3.3  Polyworld

An approach, more faithful to biological systems, was attempted by Larry Yaeger
[14]. His virtual ecology, called Polyworld,  brings together all the principle compo-
nents of real living systems into one artificial system. Polyworld consists of a two di-
mensional plane with growing food bits. Just as in Echo, the agents interact, fight and
mate,  eat  the food and relocate by expressing behavioral  primitives.  However,  an
agent's architecture exhibits more complexity. Its behavior is controlled by a neural
network, determined from its genetic code. During lifetime, a Hebbian algorithm mod-
ulates the synaptic weights, so that the agents are able to learn. Moreover, organisms
perceive their world through a sense of vision from their own point of view.

An evolutionary run is started with the introduction of a random population whose
evolution is guided by a simple external fitness function rewarding the individuals' ac-
tivities. If the population is on the verge of dying out, reproduction is regulated by the
system. Evolved populations that exhibit behaviors  which allow them to perpetuate
their number by reproduction on their own are said to exhibit a “Successful Behavior
Strategy”.

A variety of species with recognizable behavioral strategies, like fleeing, grazing,
foraging,  following,  and  flocking,  evolved  from  this  model.  These  results  met
Yaeger's primary goal, that is  to achieve the emergence of population level behavior
from elementary naturalistic building blocks.

3.4   Discussion

In these early models, the multi-agent architecture of EIBMs is already visible. A
number of evolving agents is placed in a non-evolving framework. The agents account
for the “living” part of the environment, whereas the framework, representing their
outside  world,  can be  considered  as  the  “non-living” part.  It  comprises  the  space
where the agents' phenotypes are inserted and potentially holds accessory objects with
simple dynamics, like obstacles or regrowing food bits. Interactions possibly occur
among agents and between agents and the non-living component (figure 4).

Tierra's memory is one dimensional and features no explicit resources at all, so that
space and CPU time are the only constraints for the individuals. Organisms do not mi-
grate, they are bound to their initial location. Hence, the only significant interaction
between organisms and non-living environment is the allocation of memory for off-
springs. Echo and Polyworld incorporate the notion of food by modeling ingestion of
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nearby located resources and subjecting the agents to metabolism. Echo allows the
agents to relocate to a discrete neighboring site. Polyworld features a two dimensional
continuous flat world, in which agents express locomotion commands like “turn” or
“move forward”.

Two major interactions between organisms and non-living environment, i.e. loco-
motion and ingestion have been incorporated, but they are modeled as primitives and
cannot be affected by evolution. The three presented models have proved that a high
level of abstraction allows to grasp various population level phenomena. However,
they yield little results on an individual scale. One of the main obstacles could be the
lack of morphology that limits the agents' degrees of freedom. The models of the fol-
lowing section particularly tackle this problem.

      Fig 4. Standard architecture of an EIBM    Fig.5. Sims' evolved creatures for walking

4   The grammar-based approach

Then next generation of EIBMs has been augmented with environments of more
physical accuracy. This improvement allowed a substantial gain of complexity of the
individuals'  phenotypes and their  interactions with the outside environment. In this
kind of models, a creature's morphology is made up of a number of pre-designed ele-
mental units whose assembly is encoded in the genotype by a grammar-like record
such as a nested graph or L-system [15]. The presented works still used their own im-
plementations of physical dynamics. However, today a number of available physics
engines relieve researchers of programming this component themselves [16].

4.1  Karl Sim's block creatures

In 1994, Karl Sims pioneered a new way of evolving both the morphology and be-
havior of virtual creatures [17]. Situated in a  three dimensional world with realistic
physics,  these  creatures  consist  of  collections  of  blocks,  linked  by  flexible  joints
which are controlled by neural circuits.  Joint angle sensors and touch sensors allow
the creatures to obtain information from their environment.  A creature's genotype is
written as a nested directed graph which describes both its morphology and neural
control  architecture.  This  representation provides  modularity to  the  mapping from
genotype to phenotype, and naturally leads to duplication and recursion of body parts.

Sims evolved several locomotion tasks like running and jumping on a flat surface,
or swimming in a virtual marine environment. It turned out that different runs of evo-
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lution produced different solutions to the same problem. Some creatures were evoca-
tive of real existing animals like a swimming snake or a walking crab. Others, equally
effective at their tasks, used strange patterns of movement and form (figure 5). In an
extending work [18], Sims studied competitive behavior. In a simple game, two oppo-
nents had to fight for possession of a cube that was placed halfway between them. The
creatures not only evolved ways of reaching the cube quickly, but also of fending off
their opponents.

4.2  Sexual Swimmers

Sexual Swimmers [19] is an artificial ecosystem which demonstrates the evolution
of morphology and locomotion among a population of stick figures in a virtual two di-
mensional pond. A simple model of  physics enables the agents to propel themselves
through simulated water. Swimmers ingest regrowing food bits throughout the pond
and reproduce by mating with other swimmers. As there is no explicit fitness function,
selection is dictated by the swimmers' locomotion skills which allow them to quickly
reach a desired goal, either food or mate. Moreover, the agents have basic percep-
tions, and the choice of a mate is influenced by preferences for morphological traits
like color, length of limbs or degree of agitation.

When length is considered attractive, populations with elongated bodies and only
few branching parts emerge.  When selecting for color, swimmers of differing colors
rarely  mate  with  each  other  and  population  often  breaks  into  distinct  coloration
groups.  This work shows how the phenomenon of sexual attractiveness affects the
course of evolution in respect of the creatures' body plan as well as locomotion style.

4.3  Framsticks

Framsticks [20] is a three dimensional virtual ecology, i.e. a project modeling crea-
tures seeking food in their environment. Besides energy balls that can be ingested by
the creatures, the outside world is enriched with a non-trivial topology and a water
level. An agent is made up of connected sticks which can be specialized for various
purposes like assimilation, strength, ingestion or sensors (figure 6). A neural brain
computes excitations in neural nets, collects data from the sensors and sends signals to
effectors that bend and rotate the connection points.

The Framsticks project proves that an increased level of complexity can yield the
same results as those obtained in simpler population level simulations, while offering
much more possibilities to investigate individual level behavior. Like in Sims' work, a
number of locomotion techniques evolved from this model. Moreover, a comparison
of different kinds of genotypes was published showing that evolution can be enhanced
by the choice of well-designed genetic encodings [21]. 

4.4  Discussion

The environments of the presented models are characterized by the adoption of re-
alistic physical dynamics. Ventrella's interest in population level phenomena dictated a
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relatively simple two dimensional pond. Three dimensional flat land and marine envi-
ronments were modeled by Karl Sims, and the Framsticks project merged land and
water worlds into various landscapes.

The design of possible interactions between the agents and their outside world still
focuses on ingestion and locomotion. However, whereas ingestion remains to be mod-
eled by behavioral primitives, the articulated morphology of a creature's phenotype al-
lows for a new vision of locomotion. The behavioral building block of previous mod-
els is superseded by an emergent result of the agent's morphological activities.

This fact illustrates how, to achieve a given goal, evolution can exploit the dynam-
ics of the environment. In the case of locomotion, evolution discovered that an orga-
nized behavior of the agent's morphological elemental units allows to relocate its phe-
notype. Nature offers a wide range of further demonstrations of this principle. For ex-
ample, the forces among the molecules of the air lead to properties that allowed to
evolve birds that flap their wings to fly, plants which disperse their seeds with the
wind, or humans who stimulate their vocal cords to communicate.

 Fig.6. Framsticks creature and its physics               Fig.7. Evolved Blockpushers

5   The embryogenic approach

The grammar-based genotype encoding does not mirror the process of a real crea-
ture's biological embryogenesis, since the stage of development corresponding to the
molecular chemistry is systematically skipped. The embryogenic approach, inspired
by evolutionary developmental biology, attempts to evolve the morphology and neural
architecture of virtual agents in a new, biologically more accurate fashion.

The  mapping  from genotype  to  phenotype  takes  place  during a  developmental
phase. The genotype encodes “functional genes” which express the behavior of a cell
like division, growth or death, and “regulatory genes” which generate substances that
affect the activity of both gene types. The interplay between diffusing genetic informa-
tion of adjoining cells forms a genetic regulatory network which directs the transfor-
mation of an agent from a single structural unit or cell into a multi-cellular organism.

5.1  Eggenberger's evolved morphologies

The constitutive work in this field was achieved by Eggenberger [22] who evolved
static morphologies. The environmental framework consists of a discrete three dimen-
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sional lattice which constitutes both the diffusion space of various chemicals and the
sites for the individual cells of the organisms' compound morphology. The lattice ad-
ditionally contains substances whose concentration gradients provide a positional in-
formation to the cells. 

Eggenberger demonstrated how artificial genetic regulatory networks can be mod-
eled, and that it is possible to evolve artificial multicellular organisms in a way that
they display high degrees of symmetry. Moreover, his work highlights that differential
gene expression dissociates the complexity of information in the genotype from the
complexity of the evolved phenotype.

5.2  Blockpushers

Taking up the idea of embryogenesis, Bongard and Pfeifer [23] developed a simu-
lation system, called “Artificial Ontogeny”, to evolve both the morphology and neural
control of virtual creatures. Similar to Sims' work, these creatures exist on a flat plane
within a three dimensional environment endowed with physical dynamics.

The ontogenetic process transforms a single structural unit in a continuous manner
into an articulated agent composed of several units: After a unit splits from its parent
unit, the two units are linked by a rigid connector. The new unit is attached to the rigid
connector by a one degree of freedom rotational joint. In a similar manner, some or all
units develop sensors, actuators and internal neural structure (figure 7).  In order to
evaluate its fitness, an agent is first grown and then tested against a given fitness func-
tion, that is to push a nearby block as far as possible.

The evolved blockpushers were found to solve the problem, showing that a  mini-
mal model of embryogenesis suffices to evolve agents that perform a non-trivial task
in a virtual environment with physical dynamics. According to the authors, the ob-
tained results “point to the high evolvability of the Artificial Ontogeny system” [23].

5.3  Discussion

The models of this section are characterized by a new approach with respect to the
agent's genesis. For this purpose, the environments have been enriched with the capac-
ity of diffusing substances in order to allow the propagation of gene products. In addi-
tion to the dynamics of realistic physics, the concept of diffusion is another example
of environmental dynamics that allows emergent phenomena which are, in the case of
embryogenesis, new ways of phenotypic shaping.

However, the quality of diffusion is only exploited during the process of the agents'
developmental phase. Eggenberger abstains from complex physical dynamics as he is
only interested in static phenotypes, whereas Bongard and Pfeifer adopt a physics-
based three dimensional space in order to study morphological activity. Interactions
between full-grown agents and the outside world do not seem to exceed those in the
models of the last section.

The recency of the approach does not allow for final conclusions, but it is question-
able whether further research will considerably surpass the results of grammar-based
encoding schemes, as long as the environment is not endowed with new properties.
Two approaches are suggested in the next section.
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6   Synthesis and Conclusion

 The study of EIBMs is becoming an increasingly important domain in Artificial
Life research. EIBMs allow to investigate the laws of the evolution of autonomous
agents at individual and population level. They are based on the two concepts of emer-
gence, as the models are based on individuals, and adaptation, as evolution and possi-
bly lifetime learning allow the individuals to enhance their fitness. 

A short and non-exhaustive survey of influential EIBMs during the past twenty
years has been presented in this paper. The works can be grouped into four periods
which reflect a particular state-of-the-art. Successes have been made with respect to
evolving both  population  level  and  individual  level  phenomena.  Virtual  ecologies
achieve the formation of simple group behavior such as flocking or trading. As to evo-
lution of individuals, simple locomotion behaviors can be readily bred.

From the view of creative and long-lasting evolution, it has to be recognized that
in  every model  evolution ceases after  initial progress.  After all,  current  ALife ap-
proaches “do not seem to be as alive as we might hope” [24]. In search of a reason for
this phenomenon, the history of EIBMs can teach a lesson: In early models, the main
focus was placed on the emergent relationships between the evolving agents, whereas
their outside world was somewhat considered as an uninteresting framework whose
primary function was the supply of space and, at best, food bits. When the design of
the environment switched to physical models, evolution was given the possibility to
exploit dynamics not only among agents, but also between agents and environment,
which resulted in the emergence of locomotion behaviors. However, after this incisive
changeover, most of the attention returned to the agents. Even in more recent models
the outside world remains not much more than an inert vacuum space whose sole pur-
pose is to allow the agents to express their morphological activities. It stands to reason
that if more care was accorded to the design of the environmental framework, evolu-
tion would not fail to discover ways to make use of its dynamics. This idea is indeed
not a new one, since early pioneers in Artificial Life like John Holland already stated
in 1962 that "the study of adaptation involves the study of both the adaptive systems
and its environment" [25].

Starting from the current state-of-the-art, different ways of enriching the environ-
ment can be considered. As seen in the discussions of sections 4 and 5, the idea of
creatures initiating dynamics in the environment might have been underestimated in
current models.  In extension to the embryogenic diffusion space, the environments
could be enriched with several media whose properties can be exploited by evolution.
If the media are able to propagate information, the approach could also provide new
ways of  communication among the  creatures.  Furthermore,  since  ingestion is  still
modeled as a behavioral primitive, a simple chemical model could complement the
physical one and extend the creatures' metabolism to ingestion, digestion and excre-
tion. Phenotypic evolution would occur not only at a functional, but also at a physio-
logical level and affect the creatures' resource management. This approach is based on
the idea that a fundamental criterion for Life is the presence of a metabolism. To be
considered as “alive”, any being, natural or artificial, should convert matter or energy
of the environment into suitable forms for its organism [26]. 

 These few ideas are only suggestions of how to reconsider the significance of all
the components of a model in the research about life-at-it-is and life-as-it-could-be.
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